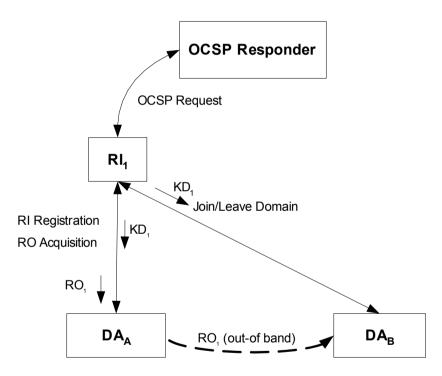

#### Introduction of the Domain Issuer in OMA DRM

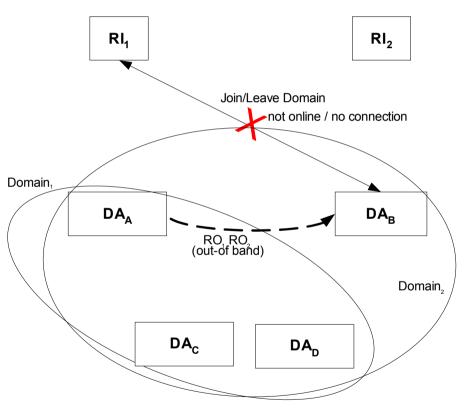
DRM workshop CCNC 2007

Paul Koster, Javier Montaner, Sorin Iacob, Najib Koraichi Philips Research, Vodafone R&D .NL, Telematica Instituut Mobile Enabled Secure Exchange of Content January 11, 2007






Philips Research, Vodafone R&D .NL, Telematica Instituut, January 11, 2007


## OMA DRM 2.0 Domain Architecture

- Rights Issuers define Domains consisting of DRM Agents
- Rights Issuers issue Rights Objects
  bound to Domains
- DRM Agents exchange Rights
  Objects (and Content) out-of-band
- →People can use their content on all their (domain) devices

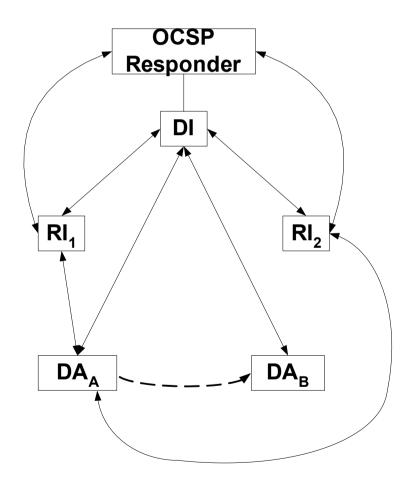


## Multiple Rights Issuers cause confusion

- People buy their OMA DRM content at multiple shops.
- No uniform behavior on all devices
  - Some content plays on all
  - Other content first requires online Join Domain
    - inconvenient and confusing for offline cases, e.g. mobile music players or memory cards

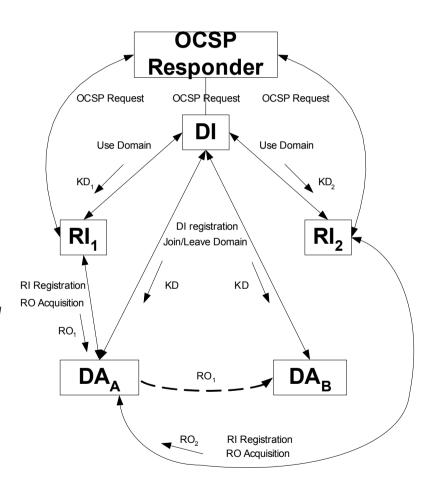


## Multiple Rights Issuers cause inconvenience

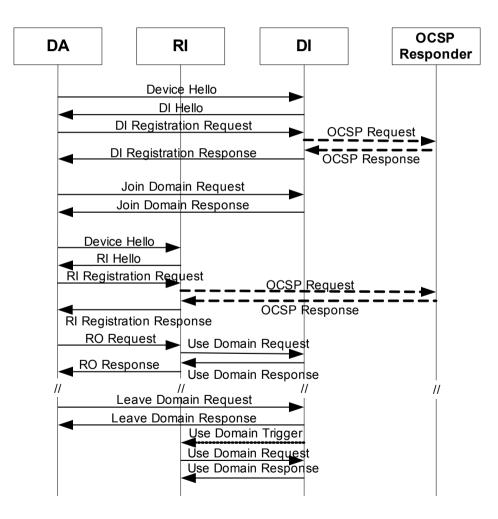

Rights Issuers have a domain policy • RI₁ User manually synchronize domains ٠ - Requires work **RI** Registration Join/Leave Domain KD, **RO** Acquisition domain limit reached Although process is easy when done on first rendering attempt RO, - Impossible in cases where one DA\_ DA<sub>R</sub> RO, (out-of band) domain reached the maximum Non-overlapping set of DAs Domain, Consistency expected ۲  $\mathbf{DA}_{\mathbf{C}}$ DA<sub>D</sub>

RI,

Domain,


## Introduction of the Domain Issuer in OMA DRM

- Single shared Domain Issuer improves
  user convenience
  - Enables user to have one domain.
  - One Join Domain between DA and DI ensures that DA can render all content issued by participating RIs.



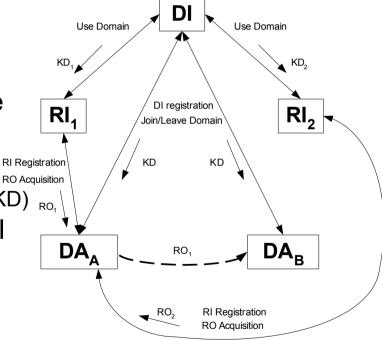

## Architecture

- One or more DIs
  - One: practical, clearer  $\sqrt{}$
  - More: confusing, inconvenient
- Domain key management
  - DK per DI: DI control, practical  $\sqrt{}$
  - DK per RI: No efficient DK distribution
- DI, RI and DA communication
  - Protocols limited to 2 parties: operational independence, robust  $\sqrt{}$
  - Proxy requests, etc.: less robust



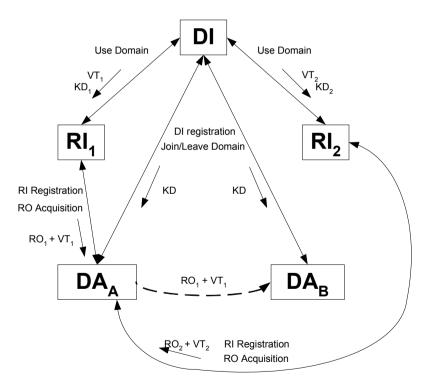
### **Example interaction**




## Requirements

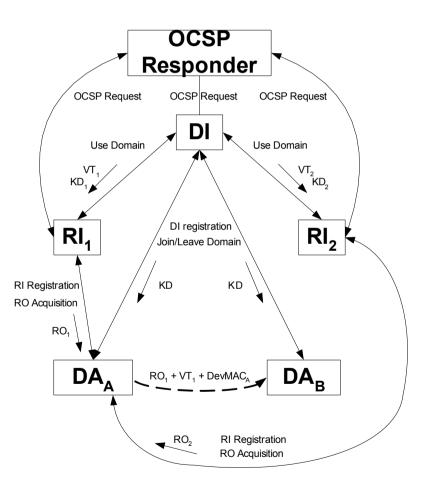
Prevent negative effects on RI and protect DI interests:

- The DI should play an essential role in key management for his domains so that it cannot be bypassed.
- The DI should be able to stop the use of domain functionality when the business relationship with RI ends.
- The RI shall trust the DI but should not need to trust other RIs that issue content for the same domain.
- Non-trusted devices should be revocable from a domain in order to secure future domain content.
- Content issued by other RIs should not be affected when a RI is revoked.


## Domain key diversification

- Diversified Domain Keys (KD<sub>i</sub>) per RI<sub>i</sub>
  - DI control
  - RI independence
- KD<sub>i</sub> derived from Master Domain Key (KD).
  KD shared by DI and DAs. KD not available to RIs.
  - DI and DA calculate KD<sub>i</sub> using RI Registration KD<sub>i</sub> = first 128 bits of HMAC-SHA1(PubKeyRI, KD) RO,
  - RI<sub>i</sub> obtains KD<sub>i</sub> via Use Domain protocol
  - RI<sub>i</sub> encrypts RO with KD<sub>i</sub>




## ValidationToken

- Diversified domain keys do not confine a KD<sub>i</sub> to one RI and have limited revocation options
- Validation Tokens (VT) entitle RIs to issue ROs to DAs belonging to domains of a DI.
  - DI control
- Operation
  - DI (periodically) creates VT<sub>i</sub>
    - VT<sub>i</sub> = {ExpiresAfter, RI<sub>i</sub> PublicKey}<sub>signedDIPrivateKey</sub>
  - RI, obtains VT, via Use Domain protocol
  - RI<sub>i</sub> embeds VT<sub>i</sub> in RO
  - DA verifies VT<sub>i</sub> using DI context



## DeviceMAC

- ValidationTokens do not prevent RI to issue ROs out-of-band
  - Using old VT
  - DAs cannot verify compliance of RI
- DeviceMAC asserts that RI had a valid nonexpired VT and was non-revoked at RO acquisition
  - DI control
  - Proof RI compliance to DA
- Operation
  - DA obtains RO and VT from RI
  - DA computes DeviceMAC: DeviceMAC = HMAC-SHA1(RO, KD)
  - DA embeds DeviceMAC in RO
  - DAs validate DeviceMAC for ROs received out of band.



## Evaluation

- Requirements met
  - Solution addresses business requirements of both DI and RI
  - However strong dependence on DI
- Security is comparable with OMA DRM 2.0
  - Domain keys protect content keys
  - Domain key updates protect future content
  - Compliance / revocation supported
  - However, DI has master domain keys

## Conclusions

- Separate Domain Issuer increases user friendliness.
- Limited changes to OMA DRM 2.0.
- Security mechanism to support independent roles of DI and RIs.
- Future work
  - transfer of domain (keys) from one DI to another
  - rights/domain management local to devices



# Q&A

